翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

vector potential : ウィキペディア英語版
vector potential

In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field.
Formally, given a vector field v, a ''vector potential'' is a vector A such that
: \mathbf = \nabla \times \mathbf.
If a vector field v admits a vector potential A, then from the equality
:\nabla \cdot (\nabla \times \mathbf) = 0
(divergence of the curl is zero) one obtains
:\nabla \cdot \mathbf = \nabla \cdot (\nabla \times \mathbf) = 0,
which implies that v must be a solenoidal vector field.
==Theorem==
Let
:\mathbf : \mathbb R^3 \to \mathbb R^3
be a solenoidal vector field which is twice continuously differentiable. Assume that v(x) decreases sufficiently fast as ||x||→∞. Define
: \mathbf (\mathbf) = \frac \int_ \frac)} \right\|} \, d^3\mathbf.
Then, A is a vector potential for v, that is,
:\nabla \times \mathbf =\mathbf.
A generalization of this theorem is the Helmholtz decomposition which states that any vector field can be decomposed as a sum of a solenoidal vector field and an irrotational vector field.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「vector potential」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.